Preliminary communication

Synthesis of a [2]-cryptand with carbon bridgeheads

ANDREW C. COXON and J. FRASER STODDART

Department of Chemistry, The University, Sheffield S3 7HF (Great Britain) (Received August 7th, 1975; accepted for publication, August 18th, 1975)

Recently, we described¹ the synthesis of the macrobicyclic polyethers 1, 2, and 3 from pentaerythritol. Attempts to effect hydrogenolysis of the dimethanesulphonate 3 with lithium aluminium hydride gave the diol 2, together with small proportions of the alcohol 4. Since none of the dimethyl [2]-cryptand 5* was obtained from this reaction, we have devised independent routes to compound 5 which we now report.

R¹
$$R^1 = R^2 = CH_2OCH_2Ph$$
 ROH_2C ROH_2C

1,1,1-Tris(hydroxymethyl)ethane (6) can be converted³ into its O-benzylidene derivative (7)** which, on treatment with lithium aluminium hydride—boron trifluoride⁴ in ether, gave the monobenzyl ether 8, m.p. 48-49°, in good yield. Treatment of diol 8 with sodium hydride and diethyleneglycol ditoluene-p-sulphonate⁵ in methyl sulphoxide afforded products with constitutions 9 and 10. Hydrogenolysis of this mixture of products over a palladium catalyst yielded the alcohol 11 as a colourless oil, and a crystalline mixture

^{*}Professor J.-M. Lehn has suggested the use of the term cryptand to us to describe all types of cavity-containing ligands. See also Ref. 2.

^{**}The product is a mixture of diastereoisomers which can be separated chromatographically. For the present purpose, we have used the mixture.

(m.p. $51-53^{\circ}$) of the diastereomeric diols 12a and 12b***, after chromatography (ethermethanol) on silica gel. Since all attempts, including high-pressure liquid chromatography, to separate 12a and 12b have so far been unsuccessful, the mixture of diols (12) was reacted with sodium hydride and diethyleneglycol ditoluene-p-sulphonate⁵ in dimethoxyethane to give the dimethyl [2]-cryptand 5 [m.p. $59-60^{\circ}$; ¹H-n.m.r. data (CDCl₃): δ 3.62 (s, 24H, $-OCH_2CH_2O$ -protons), 3.46 (s, 12H, other CH₂ protons), and 0.91 (s, 6H, 2 x Me)] in 7% yield after chromatography.

The dimethyl [2]-cryptand 5 can also be obtained in a five-step synthesis from pentaerythritol. 3,3-Bis(hydroxymethyl)oxetane (13) is readily obtainable from monobromopentaerythritol. Treatment of diol 13 with sodium hydride and diethyleneglycol ditoluene-p-sulphonate in methyl sulphoxide afforded the dispiro-compound 14⁸, m.p. 85–86°. Reductive ring-opening of the oxetane rings in 14 with lithium aluminium hydride in ether yielded the diastereomeric diols 12a and 12b***, from which the dimethyl [2]-cryptand 5 was obtained in 17% yield as previously described.

Inspection of Corey-Pauling-Koltun space-filling models indicates that 5 has a cavity size compatible with a sphere whose radius is between the ionic radii⁹ of potassium (1.33 Å) and rubidium (1.49 Å) ions.

Although the dimethyl [2]-cryptand 5 will dissolve salts of alkali metals in organic solvents (e.g., benzene or chloroform), stability constants defined by the equilibrium constants (K in 1. mol⁻¹) for complex formation according to equation (I), and measured¹⁰ potentiometrically with an ion-selective electrode, were found to be surprisingly low

^{***}The noise-decoupled ¹³C-n.m.r. spectrum in CDCl₃ exhibits seven signals, indicating that both diastereoisomers are present. The spectrum of the pure cis-diol (12a), which has been obtained in low yield by a stereospecific synthesis, exhibits six signals.

[K⁺(log K = 2.2), Rb⁺(log K = 1.9), and Cs⁺(log K = 1.6)] in methanol solution. The corresponding values [K⁺(log K = 1.8), Rb⁺(log K = 1.4), and Cs⁺(log K = 0.8)] obtained for the dispiro-compound 14 indicate that the strength of the complexes increases only marginally in methanol on going from [1]-cryptand 14 to the [2]-cryptand 5.

[2]-C+M⁺, n solvent
$$\underset{k_b}{\overset{k_f}{=}}$$
 [2]-CM⁺+n solvent (1)

However, ¹H-n.m.r. spectroscopy indicates that 5 and potassium thiocyanate form a strong complex in solution in $CDCl_3-CS_2$ (2:1). At room temperature, a sharp singlet was observed at δ 0.88 for the methyl protons. On addition of an equimolar amount of potassium thiocyanate, a new, well-resolved singlet was observed at δ 0.76 for the methyl protons. When \sim 0.5 molar equivalent of potassium thiocyanate was added, the methyl protons resonated as a well-resolved singlet at δ 0.80. Decreasing the temperature of the solution resulted in broadening of the signal and eventually the appearance (Fig. 1) of two singlets (δ 0.76 and 0.90) at -60° . This temperature-dependent behaviour can be associated with

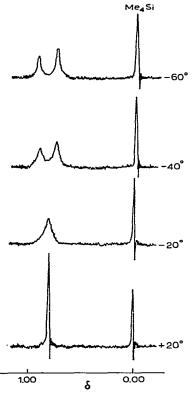


Fig. 1. The temperature dependence of the partial ¹H-n.m.r. spectrum (100 MHz) of a CDCl₃-CS₂ (~2:1) solution containing approximately equimolar amounts of the dimethyl [2]-cryptand 5 and the corresponding potassium ion complex.

exchange of potassium ions between the complex and the cryptand, where the rate-limiting step is the dissociation of the complex, i.e., $k_b < k_f$. Rate constants (k_b) were obtained at several different temperatures between -16 and -51° by carrying out line-shape analyses with a computer program suitable for simulating n.m.r. line-shapes resulting from exchange of nuclei between two sites with no mutual coupling. The corresponding free energies of activation, obtained from the Eyring equation in the usual manner, gave a value for ΔG_b^{\ddagger} of 12.3 \pm 0.3 kcal. mol⁻¹. Thus, it would appear that the dimethyl [2]-cryptand 5 forms strong complexes with potassium ions in CDCl₃-CS₂ solution. Whether or not complexation is associated with cryptate⁹ formation (i.e., encapsulation of the potassium ion by the [2]-cryptand) must await the result of an X-ray crystal structure analysis.

REFERENCES

- 1 A. C. Coxon and J. F. Stoddart, Chem. Commun., (1974) 537.
- 2 B. Kaempf, S. Raynal, A. Collet, F. Schué, S. Boileau, and J.-M. Lehn, Angew. Chem. Int. Ed. Engl., 13 (1974) 611-612.
- 3 R. F. Nasser and C. H. Issidorides, J. Org. Chem., 24 (1959) 1832-1833.
- 4 A. R. Abdun-Nur and C. H. Issidorides, J. Org. Chem., 27 (1962) 67-70.
- 5 J. Dale and P. O. Kristiansen, Acta Chem. Scand., 26 (1972) 1471-1478.
- 6 C. H. Issidorides and A. I. Matar, J. Amer. Chem. Soc., 77 (1955) 6382-6383.
- 7 S. Wawzonek, A. I. Matar, and C. H. Issidorides, Org. Syn. Coll. Vol. IV, Wiley, New York, 1963, p. 681-683.
- 8 C. G. Krespan, J. Org. Chem., 39 (1974) 2351-2355.
- 9 J.-M. Lehn, Structure and Bonding, 16 (1973) 1-69.
- 10 H. K. Frensdorff, J. Amer. Chem. Soc., 93 (1971) 600-606.